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LETTER TO THE EDITOR 

Universality of node-avoiding and path-avoiding Levy flights 

Jeffrey J Prentis and William R Geisler 
Department of Natural Sciences, The University of Michigan-Dearbom, Dearbom, 
Michigan 48128, USA 

Received 7 November 1985 

Abstract. The real space renormalisation group theory is applied to the self-avoiding Levy 
flight problem with Levy exponent g on a two-dimensional square lattice. A finite-lattice 
renormalisation transformation is used to derive the critical behaviour exhibited by two 
classes of self-avoiding Levy processes: the node-avoiding Levy flight ( NALF) and the 
path-avoiding Levy flight (PALF). It is found that the NALF and the PALF belong to the 
same universality class. 

Random walks in which the step length is a random variable with an infinite mean- 
squared displacement per step are called Levy flights (Levy 1937, Montroll and West 
1979, Mandelbrot 1977). The Levy flight process is characterised by the Levy exponent 
p which parametrises the single-step probability T , , ( / )  of taking a step of length 1. 
Asymptotically, T, ( I )  - Z - ( F + d )  in d dimensions. If 0 < p < 2, then the second moment 
(1’) is infinite and the corresponding Levy process is ‘superdiffusive’. If p 22,  then 
( I 2 )  is finite and thus, via the central limit theorem, leads to ordinary diffusive behaviour. 
The self-similar structure of the Levy flight has been characterised by a fractal dimension 
D =  p for p < 2  (Mandelbrot 1977, Hughes er a1 1981, Seshadri and West 1982). The 
connection between the Levy flight and the long-range interacting spherical model of 
critical phenomena has been noted (Joyce 1972, Hioe 1984). 

There exist two distinct types of self-avoiding interactions that can be imposed on 
the Levy flight process (Halley and Nakanishi 1985). For a Levy flight on a lattice, 
th.= unequal step lengths provide the opportunity for a Levy flight configuration to 
contain path intersections in addition to the ordinary node intersections. The path- 
avoiding Levy flight (PALF) is defined as a Levy flight that must avoid any part (nodes 
and bonds) of its entire path. Path-avoidance is a stronger constraint than node- 
avoidance and thus PALP represent a subset of the class of node-avoiding Levy flights 
(NALF). PALF would be very difficult to simulate on the computer because the path- 
avoiding constraint represents a long-range (non-Markovian) interaction that requires 
the memorisation of a set of paths, rather than a set of points. 

Recently, there has been considerable interest in the node-avoiding Levy flight 
(NALF). The effect of a node-avoiding constraint on the Levy process has been studied 
via numerical simulations in one (Grassberger 1985) and two (Halley and Nakanishi 
1985) dimensions. The isomorphism between the NALF and a zero-component spin 
model with long-range interactions (Fisher et a1 1972) has been established (Halley 
and Nakanishi 1985). A direct renormalisation group theory of the NALF, represented 
as a geometrical equilibrium statistical mechanical model, has been developed and 
used to derive the critical exponents and the end-to-end distance probability function 
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through first order in E = 2p - d (Prentis 1985). The NALF represents the first concrete 
realisation of a many-body system that can assume a continuum of values of E near zero. 

In this letter, we develop a real space renormalisation theory of the self-avoiding 
Levy flight to understand the critical behaviour exhibited by both the NALF and the 
PALF. The path-avoiding constraint, which is difficult to formulate analytically or 
simulate numerically, is readily incorporated into the framework of a real space 
renormalisation theory. We study the connection between the NALF and the PALF and 
establish the universality between these two classes of self-avoiding Levy flights. 

We consider an equilibrium statistical mechanical model of self-avoiding Levy 
flights on a two-dimensional square lattice. In addition to the fugacity weight K 
associated with each step of a Levy flight configuration, there exists the normalised 
weight T , ( I )  for each step of length 1. This normalised weight is taken to be the 
single-step probability function that defines the Levy process on a lattice (Hughes et 
a1 1981, Montroll and West 1979, Halley and Nakanishi 1985): 

In this expression, a and b are real numbers greater than unity and C is a normalisation 
constant. This probability function defines a lattice Levy flight of order F where the 
Levy exponent p is (Hughes et a1 1981): 

p =In a l ln  b. (2) 
To construct the renormalisation transformation, we partition the lattice into 2 x 2 

cells (length rescaling factor s = 2) and consider an equilibrium ensemble of self- 
avoiding Levy flights on a finite lattice defined by one 2 x 2 cell. Each step of a Levy 
flight configuration is assigned the weight KT, ( I ) .  The Levy parameter 6 in equation 
( 1 )  is assigned the value 6 =&. This allows steps of length 1 = 1,  &, 2 and & to exist 
on the finite lattice. This range of step lengths determines the normalisation constant 
C in equation ( 1 )  and thus uniquely defines the single-step probability function T, ( I )  
on the finite lattice. In the renormalised system, the renormalised fugacity K '  is 
obtained by a connectivity rule (Stanley et a1 1982). The set of all self-avoiding Levy 
flights that span the cell by beginning at the lower left vertex and exiting at the upper 
left vertex map onto a single vertical renormalised step of fugacity K'.  Figure 1 
illustrates this finite lattice renormalisation scheme for both a NALF and a PALF 

configuration. 
The critical point K,, and the critical exponent v, of the self-avoiding Levy flight 

of order p are obtained in the usual way (Stanley et a1 1982) from the fixed point KZ 
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Figure 1. Examples of ( a )  path-avoiding Levy flight (PALF) and ( b )  node-avoiding Levy 
flight ( N A L F )  that span the finite lattice and map onto a single renormalised step. 
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and the eigenvalue A, of the renormalisation transformation K ( K ) :  

K, ,  = K :  where K L ( K Z )  = K :  

U, .= - In 2 whereh,=SI d K '  . 
In A,, d K  K = K E  

(3)  

Interpretation of the critical exponent U, as a measure of the average size of the 
self-avoiding Levy flight must be done with caution. This is due to the existence of 
infinite moments which are the trademark of the Levy flight process. More precisely, 
the exponent U characterises the scaling function describing the end-to-end distance 
R correlation function (Prentis 1985). The generalised moments of order m of an 
N-step Levy flight are finite (R")- N"' if m < p  and infinite otherwise. 

The critical exponents v, obtained from this finite lattice renormalisation are 
displayed in figure 2. In this approximation, the exponents characterising the NALF 

and the PALF differ at most by 2% and are indistinguishable on the graph of figure 2. 

0 2 4 6 8 10 12 
P 

Figure 2. Critical exponent U characterising the self-avoiding Levy flight of order k. The 
full curve is obtained from the finite-lattice renormalisation theory and describes both the 
NALF and the PALF. The broken curve is the prediction of a Flory theory of the NALF. 

Also shown in figure 2 is the prediction of the Flory theory of the NALF (Grassberger 
1985). We have also implemented our renormalisation program for self-avoiding Levy 
flights on a 3 x 3 lattice and find similar behaviour. Although up for the NALF and the 
PALF are almost identical in the finite lattice approximation, this cannot be taken as 
evidence of their universality. 

In order to address the question of universality, we introduce an additional para- 
meter that will provide a mechanism to continuously connect the NALF and PALF 

problems. The natural parameter to accomplish this is a path interaction weight U 
with magnitude 0 s U C 1 that is to be assigned to all path intersections in a Levy flight 
configuration. The special case U = 0 ( U  = 1) represents the PALF (NALF) class of 
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self-avoiding Levy flights. Formally, this interaction parameter is the path-avoiding 
analogue of the Domb-Joyce parameter that characterises the cluster expansion of the 
node-avoiding random walk (polymer) problem on a lattice (Domb and Joyce 1972). 
A similar parameter was utilised in the real space renormalisation approach to under- 
stand the crossover between random and node-avoiding random walks (Family and 
Gould 1984). 

The renormalised path interaction parameter U’ is the weight associated with a path 
intersection in the renormalised system. In the finite lattice approximation, it is 
calculated from the set of all self-avoiding Levy flight configurations that span the cell 
between the two pairs of diagonal entrance and exit points. Each of these configurations 
represent a path-intersecting portion of an infinite lattice Levy flight. This set of Levy 
flight configurations will rescale onto a renormalised Levy flight that contains a path 
intersection. The renormalisation of the path-interaction weight U is illustrated in 
figure 3 .  

Figure 3. Example of a Levy flight configuration on the finite lattice that renormalises into 
a path-intersecting Levy flight. 
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Figure 4. Phase diagram representation of the renormalisation group flows. For each value 
of the Levy exponent fi ,  there exists a non-trivial PALF ( U  = 0) fixed point KZ (0)  whose 
critical surface intersects the NALF ( U  = 1) axis. The fixed points ( K z i  K: < K r )  and 
critical surfaces for fi  = 1 , 2  and CO are shown in the diagram. The trivial PALF fixed points 
(0) at K = O  and K =a represent attractors for the domains to the left and right, 
respectively, of a given critical surface. 
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This finite lattice renormalisation program yields a two-dimensional renormalisation 
group transformation that assumes the form: 

K L  T,, (1’) = KT,, (2) 3. K 2 (  T:( 1) + T:(&)) + 4K37: ( 1 ) ~ ~  (h) 
+ ~ 4 ( 7 4 ,  ( 1 ) + (2 + U )  ( 1 ) T: (h)) (4) 

( 5 )  U ’( K L)2~i (h’) = U[ K T: (A) + K T: ( 1) T’, (h)]. 
These equations define a two-dimensional renormalisation group mapping: K L (  K ,  U )  
and u L ( K ,  U). The renormalisation group flows characterising this map are represented 
in the phase diagram of figure 4. Upon repeated renormalisation, the path interaction 
parameter renormalises to zero. This is a manifestation of the fact that path intersections 
create loops which eventually become undone through renormalisation. This is a 
statement that path intersections in the Levy flight process are irrelevant to the critical 
behaviour. A similar phenomenon has been observed in the study which demonstrates 
the irrelevance of loops in the lattice trail problem (Family 1982). A feature of more 
significance is that for each value of p, there exists a non-trivial PALF ( U  = 0) fixed 
point K: whose critical surface (curve) intersects the NALF ( U  = 1)  axis. This demon- 
strates that the NALF and the PALF problems belong to the same universality class. 
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